SOLUTION 1

(a)
(i) COST CONTROL

This is usually carried out by the formal comparison of actual results with those planned eg budget, standard cost etc and investigating the variances for corrective measures.

COST REDUCTION

An attempt to reduce cost below the previously accepted norm or standard without reducing the quality or effectiveness it is not carried out frequently - eg could be carried out during the financial crisis of a firm.
(ii) TECHNIQUES/PRINCIPLES OF COST CONTROL
i. Budgeting control
ii. Standard costing
iii. Setting of spending limits by level of management
iv. Procedures for formal authorization of recruitment
v. Control of capital expenditure
(iii) VALUE ANALYSIS

Is used to examine all as aspects of an existing or proposed product or components, in order to reduce costs, whilst maintaining or improving quality. It is useful in areas of design, planning, buying and manufacturing.
(iv) It investigates every aspect of existing or proposed work in order to find the best way of performing tasks. It involves setting standards and solving problems which include bottlenecks, low morale, large amount of defective work and low productivity. It is comprised of method study and work measurements.
(b)

1. (i) Budgeting is the major formal way in which the organisational objectives are translated into specific plans, it should provide clear guidelines for current operations.
2. It is an important medium of communication for organisational plans and objectives and of the progress towards meeting those objectives.
3. The development of budgets helps to achieve co-ordination between the varing depts and functions of the organisation.
4. Management time can be saved and attention directed to areas of most concern.
5. The integration of budgets makes possible better cash and working capital management and makes stock and buying policies more realistic.
(ii) - Training

- Management Support
- Effective Communication

SOLUTION 2

(a) Variable cost per unit on normal sales:

> GHC

Direct materials 38.80
Direct labour $\quad 9.70$
Variable manufacturing overhead 2.30
Variable selling \& administrative expense $\quad 1.70$
Variable cost per unit on normal sales $\underline{\underline{52.50}}$
Variable cost per unit on special order:

Normal variable cost per unit	$\underline{\text { GHC }}$
Reduction in variable selling \& admin expenses	$\underline{(2.50}$
Variable cost per unit on special order	$\underline{52.30}$

Selling price for special order 75.30
Variable cost per unit on special order $\underline{\underline{52.30}}$
Unit contribution margin on special order $\underline{23.00}$
Number of units in special order $\quad 3,000$
Increase (decrease) in net operating income GHC69,000
(b) The opportunity cost is just the contribution margin on normal sales:

GHC
Normal selling rice per unit
81.10

Variable cost per unit on normal sales $\underline{\mathbf{5 2 . 5 0}}$
Unit contribution margin on normal sales
$\underline{28.60}$
(c) Minimum acceptable price:

Unit contribution margin on normal sales GHC28.60
Displaced normal sales

$$
1,000 \text { units }
$$

GHC
Lost contribution margin displaced sales 28,600
Total variable cost on special order $\quad \underline{156,900}$
185,500
3,000
GHC61.83

SOLUTION 3

(a) 1. Theft

2. Over and under issue of stock
3. Counting and coding error
4. Unrecorded receipts and issues
5. Breakages and evaporation
6. Short deliveries
7. Defective measuring devices used
8. Absorption of moisture
9. Placing of materials in wrong bins
(b)

Receipts	Jan	Feb	March	April	May	June
Sales	$\underline{45,650}$	$\underline{\underline{30,780}}$	$\underline{\underline{62,586}}$	$\underline{\underline{70,780}}$	$\underline{\underline{80,936}}$	$\underline{\underline{88,400}}$
Payments						
Purchases	14,000	27,440	41,160	35,280	44,100	40,180
Equipment	-	-	-	-	-	9,000
Overheads	6,500	6,500	6,500	8,400	8,400	8,400
Wages \& Salaries	16,000	16,000	16,000	16,000	16,000	16,000
Commission	1,400	3,591	4,309	5,171	5,600	6,160
	$\underline{\underline{37,900}}$	53,531	$\underline{\underline{67,969}}$	$\underline{\underline{64,851}}$	$\underline{\underline{74,100}}$	$\underline{\underline{79,740}}$
NCF	7,750	$(22,751)$	$(5,383)$	5,929	6,836	8,660
Opening cash	124,000	131,750	108,999	103,616	109,545	116,381
Closing cash	131,750	108,999	103,616	109,545	116,381	125,041

WORKINGS

Purchases

Jan.	14,000	
Feb.	$(28,000 \times 0.98)$	27,440
March $(42,000 \times 0.98)$	41,160	
April $(36,000 \times 0.98)$	35,280	
May $(45,000 \times 0.98)$	44,100	
June $(41,000 \times 0.98)$	40,180	

$\underline{\text { Sales }}$						
	Jan	Feb	March	April	May	June
Sales	51,300	$\underline{61,560}$	73,873	$\underline{80,000}$	$\underline{\underline{88,000}}$	96,800
	20,000					
Jan,	25,650		25,650			
Feb.		30,780		30,780		
March			36,936		36,936	
April				40,000		
May					44,000	
June						48,400
	45,650	30,780	$\underline{92,586}$	$\underline{70,780}$	80,936	88,400
Sales Commission						
70\% Sales	65,910	43,092	51,710.40	56,000	61,600	67,760
10\% Commission	3,591	4,309.2	5,171	5,600	6,160	6,776
Commission		$\underline{\underline{3,591}}$	$\underline{4,309}$	$\underline{\underline{5,171}}$	$\underline{\underline{5,600}}$	$\underline{\underline{6,160}}$

SOLUTION 4

(a)
(i) Material Mix Variance

GHC

5/10 K (9200 - 101,000) GHC2.40 = 2160 Fv 3/10 Y (68000-60600) GHC2.00 = 14800 Adv $2 / 10 \mathrm{Z} \mathrm{(42000-40400)}$ GHC2.88 = $\underline{4608}$ Mix variance $\underline{2192 ~ F v}$
(ii) Yield Variance

		GHC	
$5 / 8$	$\mathrm{~K}(102222-101000)$	GHC 2.40	$=2933 \mathrm{Fv}$
$3 / 8$	$\mathrm{Y}(61333-68000)$	GHC 2.00	$=13334 \mathrm{Adv}$
$2 / 10 \mathrm{Z}(40,889-40000)$	GHC 2.88	$=\underline{\underline{1408} \mathrm{Fv}}$	
Yield variance	$\underline{5807} \mathrm{Fv}$		

(iii) Usage Variance

GHC
K (102222-92000) GHC2.40 $=24533 \mathrm{Fv}$
Y (61333-68000) GHC2.00 $=13334$ Adv
Z (40889-42000) GHC2.88 = 3200 Adv
Usage variance $\quad \underline{\underline{7999}} \mathrm{Fv}$

(b) Planning Variance

(i) It tests management's forecasting skills by comparing the original budget with the reused budget.
(ii) Operational Variance

It measures management's operating efficiency by comparing actual results with a revised standard/budget.
(c) Advantages

1. It ensures that standards do not become outdated, given changing business conditions.
2. It helps in revision of standard and provides feedback on the accuracy of original standards.
3. Realistic standards improve management motivation.
4. Isolation of operational variances helps responsibility accounting-factors under control of managers are identified and reported on.

Disadvantages

1. It is difficult to establish standards.
2. There is a heavier workload for accounting and managerial staff.

SOLUTION 5

(a)

Year 2009
Year 2010
difference

Sales (GHC)	Profit (GHC)
$1,200,000$	80,000
$\underline{1,400,000}$	$\underline{130,000}$
$\mathbf{2 0 0 , 0 0 0}$	$\underline{50,000}$

(i) P/V Ratio $=\frac{50,000}{200,000} \times 100=\underline{\underline{25 \%}}$

GHC

Contribution in 2009 (1,200,000 x 25\%) 300,000
Less Profit $\quad \underline{80,000}$
Fixed Cost $\underline{220,000}$
(ii) Break-even point in sales value:

$$
\frac{\text { Fixed Cost }}{\text { P/V Ratio }}=\frac{220,000}{25 \%}=\underline{\underline{\text { GHC } 880,000}}
$$

(iii) Profit when sales is GHC $1,800,000$:

Contribution (GHC1,800,000 x 25\%)
Less Fixed Cost
Profit
(iv) Sales to earn a profit of GHC120,000:

$$
\begin{array}{rll}
\frac{\text { Fixed Cost + Target Profit }}{\text { P/V Ratio }} & = & \frac{220,000+120,000}{25 \%} \\
& = & \underline{\underline{\text { GHC}} 1,360,000}
\end{array}
$$

GH0,000
220,000
230,000
(v) Margin of safety in 2010:

Actual sales - Break-en sales
$1,400,000-880,000=\underline{\underline{\text { GHC520,000 }}}$
(b) 1. It helps in determining the Break-even point.
2. It determines the selling price which will give the target profit.
3. It helps determine the cost and revenue as different level of output.
4. It helps in determining the most profitable sales mix.
5. It shows the impact of income or decrease in fixed and variable costs on profit.
6. It helps in determining cash requirements at different levels of operation with the help of cash break-even chart.
7. It aid management decision-making.
8. It shows the effect of changes in selling price or of price differentiation in different markets.
(c) Yehowa-da Ltd
a. Capital allowances

	GHC	Tax saved at 28% GHC	Timing
Cost	5,000		
Year 0 WDA	$(1,000)$	$\underline{280}$	t_{0}
Year 1 WDA	$\begin{gathered} 4,000 \\ (800) \\ \hline \end{gathered}$	$\underline{224}$	t_{1}
Year 2 WDA	$\begin{array}{r} 3,200 \\ (640) \\ \hline \end{array}$	$\underline{179}$	t_{2}
Year 3 WDA	$\begin{array}{r} 2,560 \\ (512) \\ \hline \end{array}$	$\underline{143}$	t_{3}
	2,048		
Year 4 sale proceeds	-		
Balancing allowances	$\underline{\underline{2,048}}$	$\underline{573}$	t_{4}

b. Investment decision

Cash flows

	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}
	GHC	GHC	GHC	GHC	GHC
Purchase of machine	$(5,000)$				
Tax saved through WDAs	280	224	179	143	573
Net revenues		3,000	3,000	1,000	1,000
Tax on net revenues	$\underline{(4,720)}$	$\underline{(840)}$	$\underline{2,384}$	$\underline{(840)}$	$\underline{(280)}$
	1.000	$0.939)$	$\underline{(280)}$		
Discount factors	$(4,720)$	2,167	1,932	$\underline{863}$	$\underline{1,293}$
Present value				0.648	883

$\mathrm{NPV}=+\mathrm{GHC} 910$
Therefore accept the project.

